model {
# Define likelihood model for data:
# Carbapenem resistance in hospital (gp, volunteer, and outpatient) samples
# is Bernoulli distributed with probability wc.prob (gp.prob, v.prob,
# and o.prob)
for (p in 1:N_patients)
{
h_resist[p] ~ dbern(wc.prob[ward[h_sample_GUID[p]],
clinical[sample_type[h_sample_GUID[p]]]])
}
for (gp in 1:N_gp)
{
gp_resist[gp] ~ dbern(wgp.prob)
}
for (v in 1:N_volunteers)
{
v_resist[v] ~ dbern(wv.prob)
}
for (o in 1:N_outpatients)
{
o_resist[o] ~ dbern(wo.prob)
}
# ------------------------
# Define the priors:
# Prior distribution for wt.effect (log-odds for each ward type). Sample
# different wt.effect from normal distribution for each ward type and
# convert to a probability). Put intercept here.
for (wt in hosp_wardtypes)
{
wt.effect[wt] ~ dnorm(intercept, tau.wt)
logit(wt.prob[wt]) <- wt.effect[wt]
}
# Prior distribution for wc.effect (log-odds for each clinical class). Sample
# different clin.effect from normal distribution for each clinical class and
# convert to a probability). Since intercept is in wt, set mean to 0.
clin.effect[ncarr] ~ dnorm(0, 0.001)
clin.effect[nclin] <- -clin.effect[ncarr]
# Prior distribution for wtc.effect
for (c in c(ncarr, nclin)) # 1, 2!
{
# Ward type and clinical state are independent of each other
for (wt in hosp_wardtypes)
{
wtc.effect[wt,c] <- clin.effect[c] + wt.effect[wt]
}
# Hospital ward (wc) is nested within ward type & clinical state
for (w in hosp_wards)
{
wc.effect[w,c] ~ dnorm(wtc.effect[ward_type[w],c], tau.w)
logit(wc.prob[w,c]) <- wc.effect[w,c]
}
}
# equivalent to wtc.effect
gp.effect ~ dnorm(clin.effect[gp_clinical], tau.wt)
v.effect ~ dnorm(clin.effect[v_clinical], tau.wt)
o.effect ~ dnorm(clin.effect[o_clinical], tau.wt)
# equivalent to wc.effect
wgp.effect ~ dnorm(gp.effect, tau.w)
wv.effect ~ dnorm(v.effect, tau.w)
wo.effect ~ dnorm(o.effect, tau.w)
# convert to probability
logit(wgp.prob) <- wgp.effect
logit(wv.prob) <- wv.effect
logit(wo.prob) <- wo.effect
# ------------------------
# Prior value for intercept
intercept ~ dnorm(0, 0.001)
# Prior values for precision
tau.wt ~ dgamma(0.001, 0.001)
tau.w ~ dgamma(0.001, 0.001)
# Convert precisions to sd
sd.wt <- 1/sqrt(tau.wt)
sd.w <- 1/sqrt(tau.w)
# Calculate odds
c.diff <- clin.effect[ncarr] - clin.effect[nclin]
odds.c <- exp(c.diff)
#monitor# full.pd, dic, deviance, intercept, clin.effect, wgp.prob, wv.prob, wo.prob, odds.c, c.diff, sd.wt, sd.w
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.